eolas/neuron/d0ed26d0-cdc8-4643-8c09-445408195f9b/.neuron/output/Add_Subtract_Fractions.html
2024-10-20 19:00:04 +01:00

81 lines
No EOL
15 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html><html><head><meta content="text/html; charset=utf-8" http-equiv="Content-Type" /><meta content="width=device-width, initial-scale=1" name="viewport" /><!--replace-start-0--><!--replace-start-5--><!--replace-start-8--><title>Adding and subtracting fractions - My Zettelkasten</title><!--replace-end-8--><!--replace-end-5--><!--replace-end-0--><link href="https://cdn.jsdelivr.net/npm/fomantic-ui@2.8.7/dist/semantic.min.css" rel="stylesheet" /><link href="https://fonts.googleapis.com/css?family=Merriweather|Libre+Franklin|Roboto+Mono&amp;display=swap" rel="stylesheet" /><!--replace-start-1--><!--replace-start-4--><!--replace-start-7--><link href="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" rel="icon" /><meta content="For two fractions \frac{a}{c} and \frac{b}{c} with a common denominator, their sum is defined as:" name="description" /><meta content="Adding and subtracting fractions" property="og:title" /><meta content="My Zettelkasten" property="og:site_name" /><meta content="article" property="og:type" /><meta content="Add_Subtract_Fractions" property="neuron:zettel-id" /><meta content="Add_Subtract_Fractions" property="neuron:zettel-slug" /><meta content="fractions" property="neuron:zettel-tag" /><meta content="prealgebra" property="neuron:zettel-tag" /><script type="application/ld+json">[]</script><style type="text/css">body{background-color:#eeeeee !important;font-family:"Libre Franklin", serif !important}body .ui.container{font-family:"Libre Franklin", serif !important}body h1, h2, h3, h4, h5, h6, .ui.header, .headerFont{font-family:"Merriweather", sans-serif !important}body code, pre, tt, .monoFont{font-family:"Roboto Mono","SFMono-Regular","Menlo","Monaco","Consolas","Liberation Mono","Courier New", monospace !important}body div.z-index p.info{color:#808080}body div.z-index ul{list-style-type:square;padding-left:1.5em}body div.z-index .uplinks{margin-left:0.29999em}body .zettel-content h1#title-h1{background-color:rgba(33,133,208,0.1)}body nav.bottomPane{background-color:rgba(33,133,208,2.0e-2)}body div#footnotes{border-top-color:#2185d0}body p{line-height:150%}body img{max-width:100%}body .deemphasized{font-size:0.94999em}body .deemphasized:hover{opacity:1}body .deemphasized:not(:hover){opacity:0.69999}body .deemphasized:not(:hover) a{color:#808080 !important}body div.container.universe{padding-top:1em}body div.zettel-view ul{padding-left:1.5em;list-style-type:square}body div.zettel-view .pandoc .highlight{background-color:#ffff00}body div.zettel-view .pandoc .ui.disabled.fitted.checkbox{margin-right:0.29999em;vertical-align:middle}body div.zettel-view .zettel-content .metadata{margin-top:1em}body div.zettel-view .zettel-content .metadata div.date{text-align:center;color:#808080}body div.zettel-view .zettel-content h1{padding-top:0.2em;padding-bottom:0.2em;text-align:center}body div.zettel-view .zettel-content h2{border-bottom:solid 1px #4682b4;margin-bottom:0.5em}body div.zettel-view .zettel-content h3{margin:0px 0px 0.4em 0px}body div.zettel-view .zettel-content h4{opacity:0.8}body div.zettel-view .zettel-content div#footnotes{margin-top:4em;border-top-style:groove;border-top-width:2px;font-size:0.9em}body div.zettel-view .zettel-content div#footnotes ol > li > p:only-of-type{display:inline;margin-right:0.5em}body div.zettel-view .zettel-content aside.footnote-inline{width:30%;padding-left:15px;margin-left:15px;float:right;background-color:#d3d3d3}body div.zettel-view .zettel-content .overflows{overflow:auto}body div.zettel-view .zettel-content code{margin:auto auto auto auto;font-size:100%}body div.zettel-view .zettel-content p code, li code, ol code{padding:0.2em 0.2em 0.2em 0.2em;background-color:#f5f2f0}body div.zettel-view .zettel-content pre{overflow:auto}body div.zettel-view .zettel-content dl dt{font-weight:bold}body div.zettel-view .zettel-content blockquote{background-color:#f9f9f9;border-left:solid 10px #cccccc;margin:1.5em 0px 1.5em 0px;padding:0.5em 10px 0.5em 10px}body div.zettel-view .zettel-content.raw{background-color:#dddddd}body .ui.label.zettel-tag{color:#000000}body .ui.label.zettel-tag a{color:#000000}body nav.bottomPane ul.backlinks > li{padding-bottom:0.4em;list-style-type:disc}body nav.bottomPane ul.context-list > li{list-style-type:lower-roman}body .footer-version img{-webkit-filter:grayscale(100%);-moz-filter:grayscale(100%);-ms-filter:grayscale(100%);-o-filter:grayscale(100%);filter:grayscale(100%)}body .footer-version img:hover{-webkit-filter:grayscale(0%);-moz-filter:grayscale(0%);-ms-filter:grayscale(0%);-o-filter:grayscale(0%);filter:grayscale(0%)}body .footer-version, .footer-version a, .footer-version a:visited{color:#808080}body .footer-version a{font-weight:bold}body .footer-version{margin-top:1em !important;font-size:0.69999em}@media only screen and (max-width: 768px){body div#zettel-container{margin-left:0.4em !important;margin-right:0.4em !important}}body span.zettel-link-container span.zettel-link a{color:#2185d0;font-weight:bold;text-decoration:none}body span.zettel-link-container span.zettel-link a:hover{background-color:rgba(33,133,208,0.1)}body span.zettel-link-container span.extra{color:auto}body span.zettel-link-container.errors{border:solid 1px #ff0000}body span.zettel-link-container.errors span.zettel-link a:hover{text-decoration:none !important;cursor:not-allowed}body [data-tooltip]:after{font-size:0.69999em}body div.tag-tree div.node{font-weight:bold}body div.tag-tree div.node a.inactive{color:#555555}body .tree.flipped{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}body .tree{overflow:auto}body .tree ul.root{padding-top:0px;margin-top:0px}body .tree ul{position:relative;padding:1em 0px 0px 0px;white-space:nowrap;margin:0px auto 0px auto;text-align:center}body .tree ul::after{content:"";display:table;clear:both}body .tree ul:last-child{padding-bottom:0.1em}body .tree li{display:inline-block;vertical-align:top;text-align:center;list-style-type:none;position:relative;padding:1em 0.5em 0em 0.5em}body .tree li::before{content:"";position:absolute;top:0px;right:50%;border-top:solid 2px #cccccc;width:50%;height:1.19999em}body .tree li::after{content:"";position:absolute;top:0px;right:50%;border-top:solid 2px #cccccc;width:50%;height:1.19999em}body .tree li::after{right:auto;left:50%;border-left:solid 2px #cccccc}body .tree li:only-child{padding-top:0em}body .tree li:only-child::after{display:none}body .tree li:only-child::before{display:none}body .tree li:first-child::before{border-style:none;border-width:0px}body .tree li:first-child::after{border-radius:5px 0px 0px 0px}body .tree li:last-child::after{border-style:none;border-width:0px}body .tree li:last-child::before{border-right:solid 2px #cccccc;border-radius:0px 5px 0px 0px}body .tree ul ul::before{content:"";position:absolute;top:0px;left:50%;border-left:solid 2px #cccccc;width:0px;height:1.19999em}body .tree li div.forest-link{border:solid 2px #cccccc;padding:0.2em 0.29999em 0.2em 0.29999em;text-decoration:none;display:inline-block;border-radius:5px 5px 5px 5px;color:#333333;position:relative;top:2px}body .tree.flipped li div.forest-link{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}</style><script
async=""
id="MathJax-script"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"
></script>
<link
href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/themes/prism.min.css"
rel="stylesheet"
/><link rel="preconnect" href="https://fonts.googleapis.com" /><link
rel="preconnect"
href="https://fonts.gstatic.com"
crossorigin
/><link
href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans+Condensed:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Serif:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&display=swap"
rel="stylesheet"
/>
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/components/prism-core.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/plugins/autoloader/prism-autoloader.min.js"></script>
<style>
body .ui.container,
body ul {
font-family: "IBM Plex Sans" !important;
}
body blockquote {
border-left-width: 3px !important;
font-style: italic;
}
.headerFont,
.ui.header,
body h1,
h2,
h3,
h4,
h5,
h6 {
font-family: "IBM Plex Sans Condensed" !important;
}
body p {
line-height: 1.4;
}
.monoFont,
body code,
pre,
tt {
font-family: "IBM Plex Mono" !important;
font-size: 12px !important;
line-height: 1.4 !important;
}
</style>
<!--replace-end-7--><!--replace-end-4--><!--replace-end-1--></head><body><div class="ui fluid container universe"><!--replace-start-2--><!--replace-start-3--><!--replace-start-6--><div class="ui text container" id="zettel-container" style="position: relative"><div class="zettel-view"><article class="ui raised attached segment zettel-content"><div class="pandoc"><h1 id="title-h1">Adding and subtracting fractions</h1><h2 id="adding-subracting-fractions-with-common-denominators">Adding/ subracting fractions with common denominators</h2><p>For two fractions <span class="math inline">\(\frac{a}{c}\)</span> and <span class="math inline">\(\frac{b}{c}\)</span> with a common denominator, their sum is defined as:</p><p><span class="math display">$$
\frac{a}{c} + \frac{b}{c} = \frac{a + b}{c}
$$</span></p><p>For example:</p><p><span class="math display">$$
\frac{2}{8} + \frac{3}{8} = \frac{5}{8}
$$</span></p><p>The same applies to subtraction:</p><p><span class="math display">$$
\frac{a}{c} - \frac{b}{c} = \frac{a - b}{c}
$$</span></p><h2 id="adding-subracting-fractions-without-common-denominators">Adding/ subracting fractions without common denominators</h2><ul><li>Find the lowest common denominator for the two fractions</li><li>Use this to create two equivalent fractions</li><li>Add/subtract</li><li>Reduce</li></ul><h3 id="lowest-common-denominator-and-lowest-common-multiple">Lowest common denominator and lowest common multiple</h3><p>Given the symmetry between <span class="zettel-link-container cf"><span class="zettel-link" title="Zettel: Factors and divisors"><a href="Factors_and_divisors.html">factors and divisors</a></span></span> these properties are related. Note however that the LCM is more generic: it applies to any set of numbers not just fractions. Whereas the LCD is explicitly to do with fractions (hence denominator).</p><ul><li><p>For two fractions <span class="math inline">\(a, b\)</span> (or a set), the LCD is the smallest number divisble by both the denominator of <span class="math inline">\(a\)</span> and the denominator of <span class="math inline">\(b\)</span> (or each member of the set).</p></li><li><p>For two fractions <span class="math inline">\(a, b\)</span> (or a set), the LCM is the smallest number that is a multiple of the denominator of <span class="math inline">\(a\)</span> and the denominator of <span class="math inline">\(b\)</span> (or each member of the set).</p></li></ul><p>In order to find the LCM of the set <span class="math inline">\(\{12, 16\}\)</span> we list the multiples of both:</p><p><span class="math display">$$
12, 24, 36, 48 \\
16, 32, 48
$$</span></p><p>Until we identify the smallest number common to both lists. In this case it is 48. Thus the LCM of 12 and 16 is 48.</p><p>The relationship between LCM and LCD is that <em>the least common denominator is the least common multiple of the fractions denomintors</em>.</p><h3 id="demonstration-addition">Demonstration: addition</h3><p>We can now use this to calculate the addition of two fractions without common denominators: <span class="math inline">\(\frac{4}{9} + \frac{1}{6}\)</span>.</p><p>First identify the common multiples of 9 and 6:</p><p><span class="math display">$$
9, 18, ... \\
6, 12, 18, ...
$$</span></p><p>The least common multiple is 18. We then think: what do we need to multiply each denominator by to get 18?</p><p>In the case of the first fraction (<span class="math inline">\(\frac{4}{9}\)</span>) it is 2:</p><p><span class="math display">$$
\frac{4}{9 \cdot 2} = \frac{4}{18}
$$</span></p><p>But what we do to the denominator, we must also do to the numerator, hence:</p><p><span class="math display">$$
\frac{4 \cdot 2}{9 \cdot 2} = \frac{8}{18}
$$</span></p><p>We then do the same to the second fraction (<span class="math inline">\(\frac{1}{6}\)</span>). We need to multiply its denominator by 3 to get 18 and we apply this also to the numerator.</p><p><span class="math display">$$
\frac{1 \cdot 3}{6 \cdot 3} = \frac{3}{18}
$$</span></p><p>We now have two fractions that share a common denominator so we can sum:</p><p><span class="math display">$$
\frac{8}{18} + \frac{3}{18} = \frac{11}{18}
$$</span></p><h3 id="demonstration-subtraction">Demonstration: subtraction</h3><p>Calculate:</p><p><span class="math display">$$
\frac{3}{5} - \frac{2}{3}
$$</span></p><p>Once again we need to find the least common denominator for the two fractions. We start by listing the common multiples for the two denominators 5 and 3:</p><p><span class="math display">$$
5, 10, 15, ... \\
3, 6, 9, 12, 15,...
$$</span></p><p>The lowest common multiple is 15. From the first fraction we get 15 by multiplying by 3. With the second fraction we get 15 by multiplying by 5. Thus:</p><p><span class="math display">$$
\frac{3 \cdot 3}{5 \cdot 3} = \frac{9}{15}
$$</span></p><p><span class="math display">$$
\frac{2 \cdot 5}{3 \cdot 5} = \frac{10}{15}
$$</span></p><p>We can now carry out the subtraction:</p><p><span class="math display">$$
\frac{9}{15} - \frac{10}{15} = -\frac{1}{15}
$$</span></p></div></article><nav class="ui attached segment deemphasized bottomPane" id="neuron-tags-pane"><div><span class="ui basic label zettel-tag" title="Tag">fractions</span><span class="ui basic label zettel-tag" title="Tag">prealgebra</span></div></nav><nav class="ui bottom attached icon compact inverted menu blue" id="neuron-nav-bar"><!--replace-start-9--><!--replace-end-9--><a class="right item" href="impulse.html" title="Open Impulse"><i class="wave square icon"></i></a></nav></div></div><!--replace-end-6--><!--replace-end-3--><!--replace-end-2--><div class="ui center aligned container footer-version"><div class="ui tiny image"><a href="https://neuron.zettel.page"><img alt="logo" src="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" title="Generated by Neuron 1.9.35.3" /></a></div></div></div></body></html>