81 lines
15 KiB
HTML
81 lines
15 KiB
HTML
![]() |
<!DOCTYPE html><html><head><meta content="text/html; charset=utf-8" http-equiv="Content-Type" /><meta content="width=device-width, initial-scale=1" name="viewport" /><!--replace-start-0--><!--replace-start-5--><!--replace-start-8--><title>Adding and subtracting fractions - My Zettelkasten</title><!--replace-end-8--><!--replace-end-5--><!--replace-end-0--><link href="https://cdn.jsdelivr.net/npm/fomantic-ui@2.8.7/dist/semantic.min.css" rel="stylesheet" /><link href="https://fonts.googleapis.com/css?family=Merriweather|Libre+Franklin|Roboto+Mono&display=swap" rel="stylesheet" /><!--replace-start-1--><!--replace-start-4--><!--replace-start-7--><link href="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" rel="icon" /><meta content="For two fractions \frac{a}{c} and \frac{b}{c} with a common denominator, their sum is defined as:" name="description" /><meta content="Adding and subtracting fractions" property="og:title" /><meta content="My Zettelkasten" property="og:site_name" /><meta content="article" property="og:type" /><meta content="Add_Subtract_Fractions" property="neuron:zettel-id" /><meta content="Add_Subtract_Fractions" property="neuron:zettel-slug" /><meta content="fractions" property="neuron:zettel-tag" /><meta content="prealgebra" property="neuron:zettel-tag" /><script type="application/ld+json">[]</script><style type="text/css">body{background-color:#eeeeee !important;font-family:"Libre Franklin", serif !important}body .ui.container{font-family:"Libre Franklin", serif !important}body h1, h2, h3, h4, h5, h6, .ui.header, .headerFont{font-family:"Merriweather", sans-serif !important}body code, pre, tt, .monoFont{font-family:"Roboto Mono","SFMono-Regular","Menlo","Monaco","Consolas","Liberation Mono","Courier New", monospace !important}body div.z-index p.info{color:#808080}body div.z-index ul{list-style-type:square;padding-left:1.5em}body div.z-index .uplinks{margin-left:0.29999em}body .zettel-content h1#title-h1{background-color:rgba(33,133,208,0.1)}body nav.bottomPane{background-color:rgba(33,133,208,2.0e-2)}body div#footnotes{border-top-color:#2185d0}body p{line-height:150%}body img{max-width:100%}body .deemphasized{font-size:0.94999em}body .deemphasized:hover{opacity:1}body .deemphasized:not(:hover){opacity:0.69999}body .deemphasized:not(:hover) a{color:#808080 !important}body div.container.universe{padding-top:1em}body div.zettel-view ul{padding-left:1.5em;list-style-type:square}body div.zettel-view .pandoc .highlight{background-color:#ffff00}body div.zettel-view .pandoc .ui.disabled.fitted.checkbox{margin-right:0.29999em;vertical-align:middle}body div.zettel-view .zettel-content .metadata{margin-top:1em}body div.zettel-view .zettel-content .metadata div.date{text-align:center;color:#808080}body div.zettel-view .zettel-content h1{padding-top:0.2em;padding-bottom:0.2em;text-align:center}body div.zettel-view .zettel-content h2{border-bottom:solid 1px #4682b4;margin-bottom:0.5em}body div.zettel-view .zettel-content h3{margin:0px 0px 0.4em 0px}body div.zettel-view .zettel-content h4{opacity:0.8}body div.zettel-view .zettel-content div#footnotes{margin-top:4em;border-top-style:groove;border-top-width:2px;font-size:0.9em}body div.zettel-view .zettel-content div#footnotes ol > li > p:only-of-type{display:inline;margin-right:0.5em}body div.zettel-view .zettel-content aside.footnote-inline{width:30%;padding-left:15px;margin-left:15px;float:right;background-color:#d3d3d3}body div.zettel-view .zettel-content .overflows{overflow:auto}body div.zettel-view .zettel-content code{margin:auto auto auto auto;font-size:100%}body div.zettel-view .zettel-content p code, li code, ol code{padding:0.2em 0.2em 0.2em 0.2em;background-color:#f5f2f0}body div.zettel-view .zettel-content pre{overflow:auto}body div.zettel-view .zettel-content dl dt{font-weight:bold}body div.zettel-view .zettel-content blockquote{background-color:#f9f9f9;border-left:solid 10px #cccccc;margin:1.5em 0px 1.5em 0px;padding:0.5em 10px 0.5em 10px}body div.zettel-view .zettel-content.raw{background-color:#dddddd}body .ui.label.zettel-tag{colo
|
|||
|
async=""
|
|||
|
id="MathJax-script"
|
|||
|
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"
|
|||
|
></script>
|
|||
|
<link
|
|||
|
href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/themes/prism.min.css"
|
|||
|
rel="stylesheet"
|
|||
|
/><link rel="preconnect" href="https://fonts.googleapis.com" /><link
|
|||
|
rel="preconnect"
|
|||
|
href="https://fonts.gstatic.com"
|
|||
|
crossorigin
|
|||
|
/><link
|
|||
|
href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans+Condensed:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Serif:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&display=swap"
|
|||
|
rel="stylesheet"
|
|||
|
/>
|
|||
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/components/prism-core.min.js"></script>
|
|||
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/plugins/autoloader/prism-autoloader.min.js"></script>
|
|||
|
<style>
|
|||
|
body .ui.container,
|
|||
|
body ul {
|
|||
|
font-family: "IBM Plex Sans" !important;
|
|||
|
}
|
|||
|
body blockquote {
|
|||
|
border-left-width: 3px !important;
|
|||
|
font-style: italic;
|
|||
|
}
|
|||
|
.headerFont,
|
|||
|
.ui.header,
|
|||
|
body h1,
|
|||
|
h2,
|
|||
|
h3,
|
|||
|
h4,
|
|||
|
h5,
|
|||
|
h6 {
|
|||
|
font-family: "IBM Plex Sans Condensed" !important;
|
|||
|
}
|
|||
|
body p {
|
|||
|
line-height: 1.4;
|
|||
|
}
|
|||
|
.monoFont,
|
|||
|
body code,
|
|||
|
pre,
|
|||
|
tt {
|
|||
|
font-family: "IBM Plex Mono" !important;
|
|||
|
font-size: 12px !important;
|
|||
|
line-height: 1.4 !important;
|
|||
|
}
|
|||
|
</style>
|
|||
|
<!--replace-end-7--><!--replace-end-4--><!--replace-end-1--></head><body><div class="ui fluid container universe"><!--replace-start-2--><!--replace-start-3--><!--replace-start-6--><div class="ui text container" id="zettel-container" style="position: relative"><div class="zettel-view"><article class="ui raised attached segment zettel-content"><div class="pandoc"><h1 id="title-h1">Adding and subtracting fractions</h1><h2 id="adding-subracting-fractions-with-common-denominators">Adding/ subracting fractions with common denominators</h2><p>For two fractions <span class="math inline">\(\frac{a}{c}\)</span> and <span class="math inline">\(\frac{b}{c}\)</span> with a common denominator, their sum is defined as:</p><p><span class="math display">$$
|
|||
|
\frac{a}{c} + \frac{b}{c} = \frac{a + b}{c}
|
|||
|
$$</span></p><p>For example:</p><p><span class="math display">$$
|
|||
|
\frac{2}{8} + \frac{3}{8} = \frac{5}{8}
|
|||
|
$$</span></p><p>The same applies to subtraction:</p><p><span class="math display">$$
|
|||
|
\frac{a}{c} - \frac{b}{c} = \frac{a - b}{c}
|
|||
|
$$</span></p><h2 id="adding-subracting-fractions-without-common-denominators">Adding/ subracting fractions without common denominators</h2><ul><li>Find the lowest common denominator for the two fractions</li><li>Use this to create two equivalent fractions</li><li>Add/subtract</li><li>Reduce</li></ul><h3 id="lowest-common-denominator-and-lowest-common-multiple">Lowest common denominator and lowest common multiple</h3><p>Given the symmetry between <span class="zettel-link-container cf"><span class="zettel-link" title="Zettel: Factors and divisors"><a href="Factors_and_divisors.html">factors and divisors</a></span></span> these properties are related. Note however that the LCM is more generic: it applies to any set of numbers not just fractions. Whereas the LCD is explicitly to do with fractions (hence ‘denominator’).</p><ul><li><p>For two fractions <span class="math inline">\(a, b\)</span> (or a set), the LCD is the smallest number divisble by both the denominator of <span class="math inline">\(a\)</span> and the denominator of <span class="math inline">\(b\)</span> (or each member of the set).</p></li><li><p>For two fractions <span class="math inline">\(a, b\)</span> (or a set), the LCM is the smallest number that is a multiple of the denominator of <span class="math inline">\(a\)</span> and the denominator of <span class="math inline">\(b\)</span> (or each member of the set).</p></li></ul><p>In order to find the LCM of the set <span class="math inline">\(\{12, 16\}\)</span> we list the multiples of both:</p><p><span class="math display">$$
|
|||
|
12, 24, 36, 48 \\
|
|||
|
16, 32, 48
|
|||
|
$$</span></p><p>Until we identify the smallest number common to both lists. In this case it is 48. Thus the LCM of 12 and 16 is 48.</p><p>The relationship between LCM and LCD is that <em>the least common denominator is the least common multiple of the fractions’ denomintors</em>.</p><h3 id="demonstration-addition">Demonstration: addition</h3><p>We can now use this to calculate the addition of two fractions without common denominators: <span class="math inline">\(\frac{4}{9} + \frac{1}{6}\)</span>.</p><p>First identify the common multiples of 9 and 6:</p><p><span class="math display">$$
|
|||
|
9, 18, ... \\
|
|||
|
6, 12, 18, ...
|
|||
|
$$</span></p><p>The least common multiple is 18. We then think: what do we need to multiply each denominator by to get 18?</p><p>In the case of the first fraction (<span class="math inline">\(\frac{4}{9}\)</span>) it is 2:</p><p><span class="math display">$$
|
|||
|
\frac{4}{9 \cdot 2} = \frac{4}{18}
|
|||
|
$$</span></p><p>But what we do to the denominator, we must also do to the numerator, hence:</p><p><span class="math display">$$
|
|||
|
\frac{4 \cdot 2}{9 \cdot 2} = \frac{8}{18}
|
|||
|
$$</span></p><p>We then do the same to the second fraction (<span class="math inline">\(\frac{1}{6}\)</span>). We need to multiply its denominator by 3 to get 18 and we apply this also to the numerator.</p><p><span class="math display">$$
|
|||
|
\frac{1 \cdot 3}{6 \cdot 3} = \frac{3}{18}
|
|||
|
$$</span></p><p>We now have two fractions that share a common denominator so we can sum:</p><p><span class="math display">$$
|
|||
|
\frac{8}{18} + \frac{3}{18} = \frac{11}{18}
|
|||
|
$$</span></p><h3 id="demonstration-subtraction">Demonstration: subtraction</h3><p>Calculate:</p><p><span class="math display">$$
|
|||
|
\frac{3}{5} - \frac{2}{3}
|
|||
|
$$</span></p><p>Once again we need to find the least common denominator for the two fractions. We start by listing the common multiples for the two denominators 5 and 3:</p><p><span class="math display">$$
|
|||
|
5, 10, 15, ... \\
|
|||
|
3, 6, 9, 12, 15,...
|
|||
|
$$</span></p><p>The lowest common multiple is 15. From the first fraction we get 15 by multiplying by 3. With the second fraction we get 15 by multiplying by 5. Thus:</p><p><span class="math display">$$
|
|||
|
\frac{3 \cdot 3}{5 \cdot 3} = \frac{9}{15}
|
|||
|
$$</span></p><p><span class="math display">$$
|
|||
|
\frac{2 \cdot 5}{3 \cdot 5} = \frac{10}{15}
|
|||
|
$$</span></p><p>We can now carry out the subtraction:</p><p><span class="math display">$$
|
|||
|
\frac{9}{15} - \frac{10}{15} = -\frac{1}{15}
|
|||
|
$$</span></p></div></article><nav class="ui attached segment deemphasized bottomPane" id="neuron-tags-pane"><div><span class="ui basic label zettel-tag" title="Tag">fractions</span><span class="ui basic label zettel-tag" title="Tag">prealgebra</span></div></nav><nav class="ui bottom attached icon compact inverted menu blue" id="neuron-nav-bar"><!--replace-start-9--><!--replace-end-9--><a class="right item" href="impulse.html" title="Open Impulse"><i class="wave square icon"></i></a></nav></div></div><!--replace-end-6--><!--replace-end-3--><!--replace-end-2--><div class="ui center aligned container footer-version"><div class="ui tiny image"><a href="https://neuron.zettel.page"><img alt="logo" src="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" title="Generated by Neuron 1.9.35.3" /></a></div></div></div></body></html>
|