63 lines
2.1 KiB
Markdown
63 lines
2.1 KiB
Markdown
---
|
|
tags:
|
|
- Mathematics
|
|
- Prealgebra
|
|
- fractions
|
|
- multiplication
|
|
---
|
|
|
|
|
|
>
|
|
> To find the product of two fractions $\frac{a}{b}$ and $\frac{c}{d}$ multiply their numerators and denominators and then reduce: $$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$
|
|
|
|
## Example
|
|
|
|
$$
|
|
\\frac{1}{3} \cdot \frac{2}{5} = \frac{1 \cdot 2}{3 \cdot 5} = \frac{2}{15}
|
|
$$
|
|
|
|
## Prime factorisation in place
|
|
|
|
The example above did not require a reduction, so here is a more complex example:
|
|
|
|
$$
|
|
\\frac{14}{15} \cdot \frac{30}{140} = \frac{420}{2100}
|
|
$$
|
|
|
|
It would be laborious to reduce such a large product using factor trees or the repeated application of divisors. We can use a more efficient method.
|
|
|
|
This method can be applied at the point at which we conduct the multiplication rather than afterwards once we have the product. We express the the initial multiplicands as factors:
|
|
|
|
$$
|
|
\\frac{14}{15} \cdot \frac{30}{140} = \frac{(2 \cdot 7) \cdot (2 \cdot 3 \cdot 5) }{(3 \cdot 5) \cdot (2 \cdot 2 \cdot 7 \cdot 5)}
|
|
$$
|
|
|
|
We now have the product in factorised form before we have applied the multiplication so we can go ahead and cancel:
|
|
|
|
$$
|
|
\\frac{\cancel{2}, \cancel{7}, \cancel{2}, \cancel{3}, \cancel{5}}{\cancel{3}, \cancel{5}, \cancel{2}, \cancel{2}, \cancel{7}, 5} = \frac{1}{5}
|
|
$$
|
|
|
|
**Note that in the above case, there was only a single 5 left as a denominator and no value left as a numerator. This is equivalent to there just being "one five" so we write $\frac{1}{5}$**
|
|
|
|
## Example with negative fractions containing variables
|
|
|
|
*Calculate: $$ - \frac{6x}{55y} \cdot - \frac{110y^2}{105x^2} $$*
|
|
|
|
First multiply in place:
|
|
$$
|
|
\\frac{(3 \cdot 2 \cdot x) \cdot (5 \cdot 2 \cdot 11 \cdot y \cdot y)}{(5 \cdot 11 \cdot y) \cdot (7 \cdot 5 \cdot 3 \cdot x \cdot x)}
|
|
$$
|
|
|
|
Then cancel:
|
|
|
|
$$
|
|
\\frac{(\cancel{3} \cdot 2 \cdot \cancel{x}) \cdot (\cancel{5} \cdot 2 \cdot \cancel{11} \cdot \cancel{y} \cdot y)}{(\cancel{5} \cdot \cancel{11} \cdot \cancel{y}) \cdot (7 \cdot 5 \cdot \cancel{3} \cdot \cancel{x} \cdot x)} =
|
|
\\frac{2 \cdot 2 \cdot y}{7 \cdot 5 \cdot x}
|
|
$$
|
|
|
|
Then reduce:
|
|
|
|
$$
|
|
\\frac{2 \cdot 2 \cdot y}{7 \cdot 5 \cdot x} = \frac{4y}{35x}
|
|
$$
|