Last Sync: 2022-05-02 08:30:04

This commit is contained in:
thomasabishop 2022-05-02 08:30:04 +01:00
parent 65aafc8e77
commit 19c59b4db2

View file

@ -34,7 +34,7 @@ But we know that when we [add fractions with a common denominator](./Add_Subtrac
$$ $$
\frac{8 + 8 + 8 + 8 + 7}{8} = \frac{39}{8} \frac{8 + 8 + 8 + 8 + 7}{8} = \frac{39}{8}
$$ $$
Addition helps to explain the concepts underlying the procedure but it is more efficient to use multiplication. Addition helps to explain the concepts underlying the procedure but it is more efficient to use multiplication.
The procedure is as follows: The procedure is as follows:
@ -68,10 +68,44 @@ Now that we know how to convert mixed fractions into improper fractions, it is s
Calculate $-2\frac{1}{12} \cdot 2 \frac{4}{5}$: Calculate $-2\frac{1}{12} \cdot 2 \frac{4}{5}$:
1. First convert each mixed fraction into an improper fraction: 1. First convert each mixed fraction into an improper fraction:
$$
\begin{split}
-2\frac{1}{12} = -2 \cdot -12 \\
= 24 + 1 \\
= - \frac{25}{12}
\end{split}
$$
$$ $$
\begin{split} \begin{split}
-2\frac{1}{12} = -2 \cdot -12 \\ 2 \frac{4}{5} =2 \cdot 5 \\
= 24 + 1 \\ = 10 + 4 \\
= \frac{24}{12} = \frac{14}{5}
\end{split} \end{split}
$$ $$
2. Then carry out the multiplication [using factorization](./Multiplying_fractions.md#prime-factorisation-in-place):
$$
\begin{split}
- \frac{25}{12} \cdot \frac{14}{5} = \\
- \frac{(5 \cdot 5) \cdot (7 \cdot 2)}{(3 \cdot 2 \cdot 2) \cdot (5)} = - \frac{5 \cdot 7 }{2 \cdot 3} \\
\end{split}
$$
3. Then simplify:
$$
- \frac{35}{6}
$$
4. Finally, convert back into a mixed fraction:
$$
\begin{split}
- \frac{35}{6} = -35 \div 6 \\
- 5 r 5 = \\
- 5 \frac{5}{6}
\end{split}
$$
## Adding and subtracting mixed fractions