From 19c59b4db2eded43ce22f33220565a758f4178ba Mon Sep 17 00:00:00 2001 From: thomasabishop Date: Mon, 2 May 2022 08:30:04 +0100 Subject: [PATCH] Last Sync: 2022-05-02 08:30:04 --- .../Mixed_and_improper_fractions.md | 44 ++++++++++++++++--- 1 file changed, 39 insertions(+), 5 deletions(-) diff --git a/Mathematics/Prealgebra/Mixed_and_improper_fractions.md b/Mathematics/Prealgebra/Mixed_and_improper_fractions.md index dd5f977..04f86e9 100644 --- a/Mathematics/Prealgebra/Mixed_and_improper_fractions.md +++ b/Mathematics/Prealgebra/Mixed_and_improper_fractions.md @@ -34,7 +34,7 @@ But we know that when we [add fractions with a common denominator](./Add_Subtrac $$ \frac{8 + 8 + 8 + 8 + 7}{8} = \frac{39}{8} $$ - + Addition helps to explain the concepts underlying the procedure but it is more efficient to use multiplication. The procedure is as follows: @@ -68,10 +68,44 @@ Now that we know how to convert mixed fractions into improper fractions, it is s Calculate $-2\frac{1}{12} \cdot 2 \frac{4}{5}$: 1. First convert each mixed fraction into an improper fraction: + $$ + \begin{split} + -2\frac{1}{12} = -2 \cdot -12 \\ + = 24 + 1 \\ + = - \frac{25}{12} + \end{split} + $$ + $$ \begin{split} - -2\frac{1}{12} = -2 \cdot -12 \\ - = 24 + 1 \\ - = \frac{24}{12} + 2 \frac{4}{5} =2 \cdot 5 \\ + = 10 + 4 \\ + = \frac{14}{5} \end{split} - $$ \ No newline at end of file + $$ + +2. Then carry out the multiplication [using factorization](./Multiplying_fractions.md#prime-factorisation-in-place): + $$ + \begin{split} + - \frac{25}{12} \cdot \frac{14}{5} = \\ + - \frac{(5 \cdot 5) \cdot (7 \cdot 2)}{(3 \cdot 2 \cdot 2) \cdot (5)} = - \frac{5 \cdot 7 }{2 \cdot 3} \\ + \end{split} + $$ + +3. Then simplify: + $$ + - \frac{35}{6} + $$ + +4. Finally, convert back into a mixed fraction: + + $$ + \begin{split} + - \frac{35}{6} = -35 \div 6 \\ + - 5 r 5 = \\ + - 5 \frac{5}{6} + \end{split} + $$ + + ## Adding and subtracting mixed fractions + \ No newline at end of file