Last Sync: 2022-05-02 08:30:04
This commit is contained in:
parent
65aafc8e77
commit
19c59b4db2
1 changed files with 39 additions and 5 deletions
|
@ -34,7 +34,7 @@ But we know that when we [add fractions with a common denominator](./Add_Subtrac
|
|||
$$
|
||||
\frac{8 + 8 + 8 + 8 + 7}{8} = \frac{39}{8}
|
||||
$$
|
||||
|
||||
|
||||
Addition helps to explain the concepts underlying the procedure but it is more efficient to use multiplication.
|
||||
|
||||
The procedure is as follows:
|
||||
|
@ -68,10 +68,44 @@ Now that we know how to convert mixed fractions into improper fractions, it is s
|
|||
Calculate $-2\frac{1}{12} \cdot 2 \frac{4}{5}$:
|
||||
|
||||
1. First convert each mixed fraction into an improper fraction:
|
||||
$$
|
||||
\begin{split}
|
||||
-2\frac{1}{12} = -2 \cdot -12 \\
|
||||
= 24 + 1 \\
|
||||
= - \frac{25}{12}
|
||||
\end{split}
|
||||
$$
|
||||
|
||||
$$
|
||||
\begin{split}
|
||||
-2\frac{1}{12} = -2 \cdot -12 \\
|
||||
= 24 + 1 \\
|
||||
= \frac{24}{12}
|
||||
2 \frac{4}{5} =2 \cdot 5 \\
|
||||
= 10 + 4 \\
|
||||
= \frac{14}{5}
|
||||
\end{split}
|
||||
$$
|
||||
$$
|
||||
|
||||
2. Then carry out the multiplication [using factorization](./Multiplying_fractions.md#prime-factorisation-in-place):
|
||||
$$
|
||||
\begin{split}
|
||||
- \frac{25}{12} \cdot \frac{14}{5} = \\
|
||||
- \frac{(5 \cdot 5) \cdot (7 \cdot 2)}{(3 \cdot 2 \cdot 2) \cdot (5)} = - \frac{5 \cdot 7 }{2 \cdot 3} \\
|
||||
\end{split}
|
||||
$$
|
||||
|
||||
3. Then simplify:
|
||||
$$
|
||||
- \frac{35}{6}
|
||||
$$
|
||||
|
||||
4. Finally, convert back into a mixed fraction:
|
||||
|
||||
$$
|
||||
\begin{split}
|
||||
- \frac{35}{6} = -35 \div 6 \\
|
||||
- 5 r 5 = \\
|
||||
- 5 \frac{5}{6}
|
||||
\end{split}
|
||||
$$
|
||||
|
||||
## Adding and subtracting mixed fractions
|
||||
|
Loading…
Add table
Reference in a new issue