65 lines
No EOL
13 KiB
HTML
65 lines
No EOL
13 KiB
HTML
<!DOCTYPE html><html><head><meta content="text/html; charset=utf-8" http-equiv="Content-Type" /><meta content="width=device-width, initial-scale=1" name="viewport" /><!--replace-start-0--><!--replace-start-5--><!--replace-start-8--><title>Multiplying fractions - My Zettelkasten</title><!--replace-end-8--><!--replace-end-5--><!--replace-end-0--><link href="https://cdn.jsdelivr.net/npm/fomantic-ui@2.8.7/dist/semantic.min.css" rel="stylesheet" /><link href="https://fonts.googleapis.com/css?family=Merriweather|Libre+Franklin|Roboto+Mono&display=swap" rel="stylesheet" /><!--replace-start-1--><!--replace-start-4--><!--replace-start-7--><link href="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" rel="icon" /><meta content="To find the product of two fractions \frac{a}{b} and \frac{c}{d} multiply their numerators and denominators and then reduce:" name="description" /><meta content="Multiplying fractions" property="og:title" /><meta content="My Zettelkasten" property="og:site_name" /><meta content="article" property="og:type" /><meta content="Multiplying_fractions" property="neuron:zettel-id" /><meta content="Multiplying_fractions" property="neuron:zettel-slug" /><meta content="arithmetic" property="neuron:zettel-tag" /><meta content="fractions" property="neuron:zettel-tag" /><meta content="prealgebra" property="neuron:zettel-tag" /><script type="application/ld+json">[]</script><style type="text/css">body{background-color:#eeeeee !important;font-family:"Libre Franklin", serif !important}body .ui.container{font-family:"Libre Franklin", serif !important}body h1, h2, h3, h4, h5, h6, .ui.header, .headerFont{font-family:"Merriweather", sans-serif !important}body code, pre, tt, .monoFont{font-family:"Roboto Mono","SFMono-Regular","Menlo","Monaco","Consolas","Liberation Mono","Courier New", monospace !important}body div.z-index p.info{color:#808080}body div.z-index ul{list-style-type:square;padding-left:1.5em}body div.z-index .uplinks{margin-left:0.29999em}body .zettel-content h1#title-h1{background-color:rgba(33,133,208,0.1)}body nav.bottomPane{background-color:rgba(33,133,208,2.0e-2)}body div#footnotes{border-top-color:#2185d0}body p{line-height:150%}body img{max-width:100%}body .deemphasized{font-size:0.94999em}body .deemphasized:hover{opacity:1}body .deemphasized:not(:hover){opacity:0.69999}body .deemphasized:not(:hover) a{color:#808080 !important}body div.container.universe{padding-top:1em}body div.zettel-view ul{padding-left:1.5em;list-style-type:square}body div.zettel-view .pandoc .highlight{background-color:#ffff00}body div.zettel-view .pandoc .ui.disabled.fitted.checkbox{margin-right:0.29999em;vertical-align:middle}body div.zettel-view .zettel-content .metadata{margin-top:1em}body div.zettel-view .zettel-content .metadata div.date{text-align:center;color:#808080}body div.zettel-view .zettel-content h1{padding-top:0.2em;padding-bottom:0.2em;text-align:center}body div.zettel-view .zettel-content h2{border-bottom:solid 1px #4682b4;margin-bottom:0.5em}body div.zettel-view .zettel-content h3{margin:0px 0px 0.4em 0px}body div.zettel-view .zettel-content h4{opacity:0.8}body div.zettel-view .zettel-content div#footnotes{margin-top:4em;border-top-style:groove;border-top-width:2px;font-size:0.9em}body div.zettel-view .zettel-content div#footnotes ol > li > p:only-of-type{display:inline;margin-right:0.5em}body div.zettel-view .zettel-content aside.footnote-inline{width:30%;padding-left:15px;margin-left:15px;float:right;background-color:#d3d3d3}body div.zettel-view .zettel-content .overflows{overflow:auto}body div.zettel-view .zettel-content code{margin:auto auto auto auto;font-size:100%}body div.zettel-view .zettel-content p code, li code, ol code{padding:0.2em 0.2em 0.2em 0.2em;background-color:#f5f2f0}body div.zettel-view .zettel-content pre{overflow:auto}body div.zettel-view .zettel-content dl dt{font-weight:bold}body div.zettel-view .zettel-content blockquote{background-color:#f9f9f9;border-left:solid 10px #cccccc;margin:1.5em 0px 1.5em 0px;padding:0.5em 10px 0.5em 10px}body div.zettel-view .zettel-content.raw{background-color:#dddddd}body .ui.label.zettel-tag{color:#000000}body .ui.label.zettel-tag a{color:#000000}body nav.bottomPane ul.backlinks > li{padding-bottom:0.4em;list-style-type:disc}body nav.bottomPane ul.context-list > li{list-style-type:lower-roman}body .footer-version img{-webkit-filter:grayscale(100%);-moz-filter:grayscale(100%);-ms-filter:grayscale(100%);-o-filter:grayscale(100%);filter:grayscale(100%)}body .footer-version img:hover{-webkit-filter:grayscale(0%);-moz-filter:grayscale(0%);-ms-filter:grayscale(0%);-o-filter:grayscale(0%);filter:grayscale(0%)}body .footer-version, .footer-version a, .footer-version a:visited{color:#808080}body .footer-version a{font-weight:bold}body .footer-version{margin-top:1em !important;font-size:0.69999em}@media only screen and (max-width: 768px){body div#zettel-container{margin-left:0.4em !important;margin-right:0.4em !important}}body span.zettel-link-container span.zettel-link a{color:#2185d0;font-weight:bold;text-decoration:none}body span.zettel-link-container span.zettel-link a:hover{background-color:rgba(33,133,208,0.1)}body span.zettel-link-container span.extra{color:auto}body span.zettel-link-container.errors{border:solid 1px #ff0000}body span.zettel-link-container.errors span.zettel-link a:hover{text-decoration:none !important;cursor:not-allowed}body [data-tooltip]:after{font-size:0.69999em}body div.tag-tree div.node{font-weight:bold}body div.tag-tree div.node a.inactive{color:#555555}body .tree.flipped{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}body .tree{overflow:auto}body .tree ul.root{padding-top:0px;margin-top:0px}body .tree ul{position:relative;padding:1em 0px 0px 0px;white-space:nowrap;margin:0px auto 0px auto;text-align:center}body .tree ul::after{content:"";display:table;clear:both}body .tree ul:last-child{padding-bottom:0.1em}body .tree li{display:inline-block;vertical-align:top;text-align:center;list-style-type:none;position:relative;padding:1em 0.5em 0em 0.5em}body .tree li::before{content:"";position:absolute;top:0px;right:50%;border-top:solid 2px #cccccc;width:50%;height:1.19999em}body .tree li::after{content:"";position:absolute;top:0px;right:50%;border-top:solid 2px #cccccc;width:50%;height:1.19999em}body .tree li::after{right:auto;left:50%;border-left:solid 2px #cccccc}body .tree li:only-child{padding-top:0em}body .tree li:only-child::after{display:none}body .tree li:only-child::before{display:none}body .tree li:first-child::before{border-style:none;border-width:0px}body .tree li:first-child::after{border-radius:5px 0px 0px 0px}body .tree li:last-child::after{border-style:none;border-width:0px}body .tree li:last-child::before{border-right:solid 2px #cccccc;border-radius:0px 5px 0px 0px}body .tree ul ul::before{content:"";position:absolute;top:0px;left:50%;border-left:solid 2px #cccccc;width:0px;height:1.19999em}body .tree li div.forest-link{border:solid 2px #cccccc;padding:0.2em 0.29999em 0.2em 0.29999em;text-decoration:none;display:inline-block;border-radius:5px 5px 5px 5px;color:#333333;position:relative;top:2px}body .tree.flipped li div.forest-link{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}</style><script
|
|
async=""
|
|
id="MathJax-script"
|
|
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"
|
|
></script>
|
|
<link
|
|
href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/themes/prism.min.css"
|
|
rel="stylesheet"
|
|
/><link rel="preconnect" href="https://fonts.googleapis.com" /><link
|
|
rel="preconnect"
|
|
href="https://fonts.gstatic.com"
|
|
crossorigin
|
|
/><link
|
|
href="https://fonts.googleapis.com/css2?family=IBM+Plex+Mono:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans+Condensed:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Sans:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&family=IBM+Plex+Serif:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;1,100;1,200;1,300;1,400;1,500;1,600;1,700&display=swap"
|
|
rel="stylesheet"
|
|
/>
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/components/prism-core.min.js"></script>
|
|
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.23.0/plugins/autoloader/prism-autoloader.min.js"></script>
|
|
<style>
|
|
body .ui.container,
|
|
body ul {
|
|
font-family: "IBM Plex Sans" !important;
|
|
}
|
|
body blockquote {
|
|
border-left-width: 3px !important;
|
|
font-style: italic;
|
|
}
|
|
.headerFont,
|
|
.ui.header,
|
|
body h1,
|
|
h2,
|
|
h3,
|
|
h4,
|
|
h5,
|
|
h6 {
|
|
font-family: "IBM Plex Sans Condensed" !important;
|
|
}
|
|
body p {
|
|
line-height: 1.4;
|
|
}
|
|
.monoFont,
|
|
body code,
|
|
pre,
|
|
tt {
|
|
font-family: "IBM Plex Mono" !important;
|
|
font-size: 12px !important;
|
|
line-height: 1.4 !important;
|
|
}
|
|
</style>
|
|
<!--replace-end-7--><!--replace-end-4--><!--replace-end-1--></head><body><div class="ui fluid container universe"><!--replace-start-2--><!--replace-start-3--><!--replace-start-6--><div class="ui text container" id="zettel-container" style="position: relative"><div class="zettel-view"><article class="ui raised attached segment zettel-content"><div class="pandoc"><h1 id="title-h1">Multiplying fractions</h1><p>To find the product of two fractions <span class="math inline">\(\frac{a}{b}\)</span> and <span class="math inline">\(\frac{c}{d}\)</span> multiply their numerators and denominators and then reduce:</p><p><span class="math display">$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$</span></p><h3 id="example">Example</h3><p><span class="math display">$$
|
|
\frac{1}{3} \cdot \frac{2}{5} = \frac{1 \cdot 2}{3 \cdot 5} = \frac{2}{15}
|
|
$$</span></p><h2 id="prime-factorisation-in-place">Prime factorisation in place</h2><p>The example above did not require a reduction, so here is a more complex example:</p><p><span class="math display">$$
|
|
\frac{14}{15} \cdot \frac{30}{140} = \frac{420}{2100}
|
|
$$</span></p><p>It would be laborious to reduce such a large product using factor trees or the repeated application of divisors, as defined in <span class="zettel-link-container cf"><span class="zettel-link" title="Zettel: Reducing fractions to their lowest terms"><a href="Reducing_fractions.html">reducing fractions</a></span></span>. We can use a more efficient method. This method can be applied at the point at which we conduct the multiplication rather than afterwards once we have the product. We express the the initial multiplicands as prime factors:</p><p><span class="math display">$$
|
|
\frac{14}{15} \cdot \frac{30}{140} = \frac{(2 \cdot 7) \cdot (2 \cdot 3 \cdot 5) }{(3 \cdot 5) \cdot (2 \cdot 2 \cdot 7 \cdot 5)}
|
|
$$</span></p><p>We now have the product in factorised form before we have applied the multiplication so we can go ahead and cancel:</p><p><span class="math display">$$
|
|
\frac{\cancel{2}, \cancel{7}, \cancel{2}, \cancel{3}, \cancel{5}}{\cancel{3}, \cancel{5}, \cancel{2}, \cancel{2}, \cancel{7}, 5} = \frac{1}{5}
|
|
$$</span></p><p><strong>Note that in the above case, there was only a single 5 left as a denominator and no value left as a numerator. This is equivalent to there just being “one five” so we write <span class="math inline">\(\frac{1}{5}\)</span></strong></p><h2 id="example-of-multiplying-fractions-with-negative-fractions-containing-variables">Example of multiplying fractions with negative fractions containing variables</h2><p>Calculate: <span class="math display">$$- \frac{6x}{55y} \cdot - \frac{110y^2}{105x^2}$$</span></p><p>First multiply in place:</p><p><span class="math display">$$
|
|
\frac{(3 \cdot 2 \cdot x) \cdot (5 \cdot 2 \cdot 11 \cdot y \cdot y)}{(5 \cdot 11 \cdot y) \cdot (7 \cdot 5 \cdot 3 \cdot x \cdot x)}
|
|
$$</span></p><p>Then cancel:</p><p><span class="math display">$$
|
|
\frac{(\cancel{3} \cdot 2 \cdot \cancel{x}) \cdot (\cancel{5} \cdot 2 \cdot \cancel{11} \cdot \cancel{y} \cdot y)}{(\cancel{5} \cdot \cancel{11} \cdot \cancel{y}) \cdot (7 \cdot 5 \cdot \cancel{3} \cdot \cancel{x} \cdot x)} =
|
|
\frac{2 \cdot 2 \cdot y}{7 \cdot 5 \cdot x}
|
|
$$</span></p><p>Then reduce:</p><p><span class="math display">$$
|
|
\frac{2 \cdot 2 \cdot y}{7 \cdot 5 \cdot x} = \frac{4y}{35x}
|
|
$$</span></p></div></article><nav class="ui attached segment deemphasized bottomPane" id="neuron-tags-pane"><div><span class="ui basic label zettel-tag" title="Tag">arithmetic</span><span class="ui basic label zettel-tag" title="Tag">fractions</span><span class="ui basic label zettel-tag" title="Tag">prealgebra</span></div></nav><nav class="ui bottom attached icon compact inverted menu blue" id="neuron-nav-bar"><!--replace-start-9--><!--replace-end-9--><a class="right item" href="impulse.html" title="Open Impulse"><i class="wave square icon"></i></a></nav></div></div><!--replace-end-6--><!--replace-end-3--><!--replace-end-2--><div class="ui center aligned container footer-version"><div class="ui tiny image"><a href="https://neuron.zettel.page"><img alt="logo" src="https://raw.githubusercontent.com/srid/neuron/master/assets/neuron.svg" title="Generated by Neuron 1.9.35.3" /></a></div></div></div></body></html> |