
Now that we know how to add and multiply using binary numbers we can apply
this knowledge to our previous understanding of circuits.

Our aim will to be have our inputs as the numbers that we will add or multiply
on and our outputs as the product or sum.

Half adder
Let’s start with the most basic example:

Half adder circuit

This circuit has the following possible range of outputs, where A and B are the
input switches and X and Y are the output signals. The logic gates (an XOR and
an AND ) are equivalent to the add function.

A B X Y
_ _ _ _

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

We can see that if we treat A and B as single binary digits that could correspond
to 21 (either 0 or 1 ) , then the X and Y outputs can be viewed collectively to
constitute the sum of A and B (we have put the denary equivalent in brackets)

A B X Y
_ _ _ _

0 0 0 0 0 + 0 = 00 [0]
0 1 0 1 0 + 1 = 01 [1]

1



1 0 0 1 1 + 0 = 01 [0]
1 1 1 1 1 + 1 = 10 [2]

This is called a half adder because it cannot go higher than 21.

Representing binary output as denary values

There are special output components that can represent the combination of
binary inputs and logic gates as denary values. Here is an example using a
seven-segment display :

maths_with_logic_gates_5.gif.crdownload

Full adder
To represent numbers higher than the denary 2, we would need a carrying
function so that we could represent numbers up to denary 3 and 4. The limit of
a half adder is 21.

We do this by adding another switch input:

2

../img/maths_with_logic_gates_5.gif.crdownload

	Half adder
	Representing binary output as denary values

	Full adder

