
General
Meyer’s Uniform Access Principle

All services offered by a module should be available through a uniform
notation, which does not betray whether they are implemented
through storage or through computation

This is a clear recommendation for using getters and setters with classes. You
should not see method calls outside of the class, they should appear as properties
of the object.

Don’t Repeat Yourself
Every piece of knowledge must have a single, unambiguous, authori-
tative representation within a system

The Principle of Orthogonality
This notion comes from geometry. Two lines are orthogonal to each other if they
form a right-angle when they meet.

Their meeting isn’t the important part. Think of a simple x, y graph:

If you move along one of the lines, your position projected onto
the other doesn’t change

In computing this is expressed in terms of decoupling and is implemented
through modular, component-based architectures. As much as possible code
should be scoped narrowly so that a change in one area does not cause changes
in others. By keeping components discrete it is easier to make changes, refactor,
improve and extend the codebase.

We want to design components that are self-contained: independent
and with a single, well-defined purpose. When components are
isolated from one another, you know that you can change one without
having to worry about the rest. As long as you don’t change that
component’s external interfaces, you can be comfortable that you
won’t cause problems that ripple through the entire system.

Benefits of orthogonality: productivity

• Changes are localised so development time and testing time are reduced
• Orthogonality promotes reuse: if components have specific, well-defined

responsibilities, they can be combined with new components in ways that
were not envisioned by their original implementors. The more loosely
coupled your systems, the easier they are to reconfigure and reengineer.

• Assume that one component does M distinct things and another does N
things. If they are orthogonal and you combine them, the result does M x
N things. However if the two components are not orthogonal, there will

1

be overlap, and the result will do less. You get more functionality per unit
effort by combining orthogonal components.

Benefits of orthogonality: reduced risk

• Diseased sections of code are isolated. If a module is sick, it is less likely
to spread the symptoms around the rest of the system.

• Overall the system is less fragile: make small changes to a particular area
and any problems you generate will be restricted to that area.

• Orthogonal systems are better tested because it is easier to run and design
discrete tests on modularised components.

Building a unit test us itself a an interesting test of orthogonality:
what does it take to build and link a unit test? Do you have to drag
in a large percentage of the rest of the system just to get a test to
compile or link? If so, you’ve found a module that is not well
decoupled from the rest of the system

Relationship between DRY and orthogonality

With DRY you’re looking to minimize duplication within a system, whereas with
orthogonality, you reduce the interdependency among the system’s components.
If you use the principle of orthogonality combined closely with the DRY principle,
you’ll find that the systems you develop are more flexible, more understandable
and easier to debug, test, and maintain.

Reversibility

The principles of orthogonality and DRY result in code that is reversible. This
means it is able to change in an agile way when the circumstances of its use and
deployment change. This is important because when developing software in a
business setting, the best decisions are not always made the first time around.
By following the principles it should be relatively easy to change your program’s
interfaces, platform and scale. In other words, with the principle of orthogonality
and DRY, refactoring becomes less of a chore.

Prototyping and Tracer Bullets
‘Tracer bullets’ are used by the military for night warfare. They are phosphorous
bullets that are included in the magazines of guns alongside normal bullets.
They are not intended to kill but instead light-up the surrounding area making
it easier to see the terrain and target more efficiently.

The authors use the notion of tracer bullets as a metaphor for developing software
at the early stages of a project. This is not the same thing as prototyping. A
tracer bullet model is useful for building things that haven’t been built before.
They exist to ‘shed light’ on the project’s needs and to help the client understand
what they want.

2

They differ from prototypes in that they include integrated overall functionality
but in a rough state. Whereas prototypes are more for singular, specific subcom-
ponents of the project. Because tracer bullet models are joined-up in this way,
even if they turn out to be inappropriate in some regard, they can be adapted
and developed into a better form, without losing the core functionality.

Tracer bullets work because they operate in the same environment
and under the same constraints as the real bullets. They get to the
target fast, so the gunner gets immediate feedback. And from a
practical standpoint they are a relatively cheap solution. To get the
same effect in code, we’re looking for something that gets us from a
requirement to some aspect of the final system quickly, visibly and
repeatably.

Tracer code is not disposable: you write it for keeps. It contains
all the error-checking, structuring, documentation and self-checking
that a piece of production code has. It simply is not fully functional.
However, once you have made an end-to-end connection among the
components of your system, you can check how close to the target
you are, adjusting as necessary.

Distinguishing from prototyping

Prototyping generates disposable code. Tracer code is lean but
complete, and forms part of the skeleton of the final system. Think
of prototyping as the reconnaissance and intelligence gathering that
takes place before a single tracer bullet is fired.

Design by contract
To understand DBC we have to think of a computational process as involving
two stages: the call and the execution of the routine that happens in response
to the call (henceforth caller and routine).

• the caller could be a function expression that invokes a function and passes
arguments to it expecting a given output. The function that executes is
the routine

• the caller could be an object instantiation that calls a method belonging
to its parent class

• the caller could be a parent React component that passes props to a child
component

Design by contract means specifying clear and inviolable rules detailing what
must obtain at both the call stage and the routine stage if the process is to
execute.

Every function and method in a software system does something. Before it
starts that something, the routine may have some expectation of the state of
the world and it may be able to make a statement about the state of the world

3

when it concludes. These expectations are defined in terms of preconditions,
postconditions, and invariants. They form that basis of a contract between the
caller and the routine. Hence *design by contract**.***

Preconditions

Preconditions specify what must be true in order for the routine to be called. In
other words, the requirements of the routine. What it needs and what should be
the case before it even considers executing the task. A routine should never
get called when its preconditions would be violated.

Postconditions

Providing the preconditions are met, this is what the routine is guaranteed to do.
In other words: the state of affairs that must obtain after the routine has ran.

Invariants

Once established, the preconditions and postconditions should not change. If
they need to change, that is a separate process and contract. In the processing
of a routine, the data may be variant relative to the contract, but by the end
the overall conditions establish the equilibrium of the contract.

There is an analogue here with functional programming philosophy: the func-
tion should always return the same sort of output, without ancillary processes
happening, i.e side-effects.

One way to achieve this is to be miserly when setting up the contract, which
overlaps with orthogonality. Only specify the minimum return on a contract
rather than multiple postconditions. This only increases the likelihood that the
contract will be breached at some point. If you need multiple postconditions,
spread them out an achieve them in a compositional way, with multiple separate
and modular processes.

Be strict in what you will accept before you begin, and promise as
little as possible in return. If your contract indicates that you’ll
accept anything and promise the world in return, then you’ve got a
lot of code to write!

Division of responsibilities

If all the routine’s preconditions are met by the caller, the routine
shall guarantee that all postconditions and invariants will be true
when it completes.

Note that the emphasis of responsibilities is on the caller.

Imagine that we have a function that returns the count of an array of integers.
It is not the job of the count routine to verify that it has been passed integers

4

and then to execute the count. Or, in the event that it is not passed integers, to
mutate the data to integers and then execute.

This should be resolved by the caller: it is the responsibility of the caller to
pass integers. If it doesn’t, the routine simply crashes or raises an exception. It
doesn’t try to accommodate the input because that does not come down on its
side of the contract. The caller has failed to meet the preconditions. If, due to
some bug, the routine receives integers and fails to output the sum, then it has
failed on its side

Example: type checking

An obvious example of this philosophy is when you perform checks or validation
within your code (although validation is more of an issue when you are dealing
with user data, not your own internal code). For instance using type checking
with dynamically-typed languages.

When we use the prop-types library with React we are specifying preconditions:
so long at the prop (effectively the caller) passed to the component (effectively
the routine) is of type X, the component will render invariantly as R. If the prop
is of type Y, an exception will be raised highlighting a breach in the contract.

Another example would be more advanced type checking with Javascript written
using Typescript.

The Law of Demeter
Demeter’s Law has applicability chiefly when programming with classes.

It’s a fancy name for a simple principle summarised by ‘don’t talk to strangers’.
Demeter’s law is violated when code has more than one step between classes.
You should avoid invoking methods of an object returned by another method.
You should only use your own methods when dealing with it.

Formal

A method m of object O may only invoke the methods of the following kinds of
objects:

• O itself
• m’s parameters
• any objects created or instantiated within m
• O’s direct component objects (in other words nested objects)
• a global variable (over and above O) accessible by O, within the scope of

m

5

Model, View, Controller design pattern
The key concept behind the MVC idiom is separating the model from both the
GUI that represents it and the controls that manage the view.

• Model
– The abstract data model representing the target object
– The model has no direct knowledge of any views or controllers

• View
– A way to interpret the model. It subscribes to changes in the model

and logical events from the controller
• Controller

– A way to control the view and provide the model with new data. It
publishes events to both the model and the view

For comparison, distinguish React from MVC. In React data is unidirectional:
the JSX component as controller cannot change the state. The state is passed
down to the controller. Also MVC lends itself to separation of technologies: code
used to create the View is different from Code that manages Controller and data
Model. In React it’s all one integrated system.

Refactoring
Rewriting, reworking, and re-architecting code is collectively known
as refactoring

When to refactor

• Duplication: you’ve discovered a violation of the DRY principle
• Non-orthogonal design: you’ve discovered some code or design that

could be made more orthogonal
• Outdated knowledge: your knowledge about the problem and you skills

at implementing a solution have changed since the code was first written.
Update and improve the code to reflect these changes

• Performance: you need to move functionality from one area of the system
to another to improve performance

Tips when refactoring

• Don’t try to refactor and add new functionality at the same time!
• Make sure you have good tests before you begin refactoring. Run the tests

as you refactor. That way you will know quickly if your changes have
broken anything

• Take short, deliberative steps. Refactoring often involves making many
localised changes that result in a larger-scale change.

6

Testing
Most developers hate testing. They tend to test-gently, subcon-
sciously knowing where the code will break and avoiding the weak
spots. Pragmatic Programmers are different. We are driven to find
our bugs now, so we don’t have to endure the shame of others finding
our bugs later.

Unit testing

A unit test is code that exercises a module. It consists in testing each module in
isolation to verify its behaviour. Unit testing is the foundation of all other forms
of testing. If the parts don’t work by themselves, they probably won’t work well
together. All the modules you are using must pass their own unit tests before
you can proceed.

We can think of unit testing as testing against contract (detailed above). We
want to test that the module delivers the functionality it promises over a wide
range of test cases and boundary conditions.

Scope for unit testing should cover:

• Obviously, returning the expected value/outcome
• Ensuring that faulty arguments/ types are rejected and initiate error han-

dling (deliberately breaking your code to ensure it is handled appropriately)
• Pass in the boundary and maximum value
• Pass in values between the zero and the maximum expressible argument

to cover a range of cases

Benefits of unit testing include:

• It creates an example to other developers how to use all of the functionality
of a given module

• It is a means to build regression tests which can be used to validate any
future changes to the code. In other words, the future changes should pass
the older tests to prove they are consistent with the code base

Integration testing

Integration testing shows that the major subsystems that make up the project
work and play well with each other.

Integration testing is really just an extension of the unit testing described, only
know you’re testing how entire subsystems honour their contracts.

Commenting your code
In general, comments should detail why something is done, its purpose and its
goal. The code already shows how it’s done, so commenting on this is redundant,
and violates the DRY principle.

7

We like to see a simple module-level comment, comments for signifi-
cant data and type declarations, and a brief class and per-method
header describing how the function is used and anything it does that
is not obvious

/*
Find the highest value within a specified data range of samples

Parameter: aRange = range of dates to search for data
Parameter: aThreshold = minimum value to consider

Return: the value, or null if no value found that is greater than or equal to the threshold
*/

8

	General
	Meyer’s Uniform Access Principle

	Don’t Repeat Yourself
	The Principle of Orthogonality
	Benefits of orthogonality: productivity
	Benefits of orthogonality: reduced risk
	Relationship between DRY and orthogonality
	Reversibility

	Prototyping and Tracer Bullets
	Distinguishing from prototyping

	Design by contract
	Preconditions
	Postconditions
	Invariants
	Division of responsibilities
	Example: type checking

	The Law of Demeter
	Formal

	Model, View, Controller design pattern
	Refactoring
	When to refactor
	Tips when refactoring

	Testing
	Unit testing
	Integration testing

	Commenting your code

