Logic gates

Logic gates are the basic building blocks of digital computing. A logic gate is
an electrical circuit that has one or more than one input and only one
output. The input controls the output and is isomorphic with logical conditions
that can be expressed in the form of truth-tables.

Truth tables

I know from my study of logic that truth tables enable us to present the conditions
under which logical propositions are true or false. To take the AND operator: AND
evaluates to true if both of its constituent expressions are true and false in
any other circumstances (e.g. if one proposition is true and the other false (or
vice versa) and if both propositions are false).

This is most clearly expressed in the following truth table:

Truth table for AND

o]
Q
o]
&
Q

H Hh oot ot
H o H ot

Another example is the negation (NOT) operator in logic which is highly trivial.
The negation operator (= or ~) switches the value of a proposition from true to
false. When we put ~ before true it becomes false and when we put ~ before
false it becomes true. We will see shortly that this corresponds to a basic
on/off switch.

Truth table fo NOT

p - P

t £

f ot

NAND gates

A NAND gate is a logic gate that combines the truth conditions for AND and NOT
.I

Let’s first introduce the circuit:

The real-life circuit showing two switches corresponding to two transistors which

)
L

»

control the LED light.

In this circuit, there are two transistors, each connected to a switch. The switches
control the LED light. So the switches are the input and the LED is the output.

For clarity, we are not going to draw both transistors, we will simplify the
diagram with a symbol for them which stands for the NAND gate:

Figure 1: NAND.png

Remember that a ‘logic gate’ is a logical abstraction of a physical
process: the voltage passing through a transistor. The transistors
register the charge and the switches control it’s flow, the ‘gate’ is just
the combination of transistors and how they are arranged. There is
not a physical gate per se, there is only the transistor whose output
we characterize in terms of logic.

The diagram below shows how the circuit models the truth conditions for AND
Diagram representing NAND gate:

o When both switches are off (corresponding to false false) the output is

Figure 2: NAND.gif

on (the bulb lights up).

o If either one of the switches are on, the output remains on (corresponding
to true false or false true)

o It is only when both switches are on, that the output is off (corresponding
to true true)

Remember that switch circuitry is counter intuitive: the switches
being on corresponds to the output ceasing to execute because the
switches break the circuit, they don’t join it.

Transliterating the logic truth table to the switch behaviour

We can now present a truth table for NAND alongside the truth conditions for
AND and NOT

// AND
P 4 pé&gq

t t t (1
t f f ©))
f t f (3)
f f f (4)
// NOT

p ~ P

= Hoct |
oo ct Hh|

Output
0 0 1 (D
1 0 1 (2)
0 1 1 (3)
1 1 0 (4)

e So we can see that the binary representation of the circuit accords with
NOT at rows (1) and (4): when both switches are off (false), the bulb
is on (true). And when both switches are on (true), the bulb is off
(false).

o Rows (2) and (3) of the binary truth table accord with rows (2) and (3) of
the AND truth table: if one of the switches is true but the other is false ,
the output is false (the bulb remains on).

More complex outputs from combining NANDS

The example we have looked at so far is fairly simple because there is just one
NAND gate corresponding to two inputs (the two switches) and one output (the
bulb).

When we add more NAND gates and combine them with each other in different
ways we can create more complex output sequences and these two will have
corresponding truth tables.

NOT gate

This gate corresponds to the NOT Boolean or negation logical connective. It is
really simple and derived from the trivial logical fact that true is true and
false is false also known as logical identity.

Natural language

The negation operator (- or ~) switches the value of a proposition
from true to false. When we put ~ before true it becomes false
and when we put ~ before false it becomes true .

Truth table
This corresponds to a simple on-off switch.

In terms of logic gates we would create this by using a single NAND gate.
Although it can take a total of two inputs, it would be controlled by a single
switch, so both inputs would be set to 1 1 or 0 0 when the switch is activated

P [T P [T
T | T | o |1
F | T 0 | 1

Figure 3: 1-w2ILS6M9pgmLcK6V1PEs3Q.png

ek

and deactivated. This would remove the AND aspect of NAND and reduce it to
NOT .

A NAND gate simulating NOT logic

[

D
o} i » :

Figure 4: Screenshot_ 2020-08-25_at_ 15.09.01.png

Symbol for NOT gate
NOT has its own electrical signal to distinguish it from a NAND:

AND gate

Just as we can create NOT logic from a NAND gate, without the AND conditions,
we can create a circuit that exemplifies the truth conditions of AND without
including those of NOT.

When we attach two NAND gates in sequence connected to two switches as
input this creates the following binary conditions:

A B Output

Figure 5: Screenshot_ 2020-08-25_at_ 15.18.34.png

0 0 0 ¢D)
1 0 0 (2)
0 1 0 (3)
1 1 1 (4)

Which is identical to the truth table for AND :

t t t ¢D)
t f f (2)
f t f (3)
f f f (4)

Natural language

AND (&) is true when both constituent propositions are true and
false in all other circumstances viz. false false (<P & -Q /0 0
), true false (P & -Q /1 0), false true ("-P & Q /0 1)

AND at 00
Screenshot_ 2020-08-25_at_ 15.04.10 1.png

[

e

[

ANDat10or01

Figure 6: Screenshot_ 2020-08-25_at_ 15.05.36.png

Symbol for AND gate
It’s very similar to NAND so be careful not to confuse it

Pasted image 20220319173651.png

OR

OR (in logic known as disjunction) in its non-exclusive form is true
if either of its propositions are true or both are true . It is false
otherwise.

Pasted image 20220319173819.png

p a pVgq

t t t (1)
t f t ©))
f t t (3)
f f f (4)
XOR

XOR stands for exclusive or, also known as exclusive conjunction.
This means it can only be true if one of its propositions are true .
If both are true this doesn’t exclude one of the propositions so the
overall statement has to be false . This is the only change in the
truth conditions from OR .

Pasted image 20220319173834.png
Electrical symbol for XOR

P qQ pXVgq

t f t 2

f t t 3
f f f (4)
*%NOR **

This is equivalent to saying ‘neither’ in natural language. It is only
true both propositions are false . If either one of the propositions
is true the outcome is false . If both are true it is false

Pasted image 20220319173900.png

XNOR

This one is confusing. I can see the truth conditions but don’t
understand them. It is true if both propositions are false like NOR
or if both propositions are true and false otherwise.

p qQ p~Vgqg

t t f €D)
t f f)]
f t f 3
f f t 4
p qQ pXVgq

t t t (1
t f f ©))
f t f 3
f f t (4)

	Logic gates
	Truth tables

	NAND gates
	Transliterating the logic truth table to the switch behaviour
	More complex outputs from combining NANDS

	NOT gate
	Natural language
	Truth table
	Symbol for NOT gate

	AND gate
	Natural language
	Symbol for AND gate
	OR
	XOR
	NOR
	XNOR

