
A stack visualised vertically

A stack visualised horizontally

A stack is a linear data structure that observes LIFO
Think of a stack like a pile of books: the last book that you add is the nearest
to the top and therefore the first one that you can remove.

1



If you want to get a book that is not at the top, you have to first remove the
books that are above it to get to it.

This type of data structure is linear and only allows sequential, not random,
access. It is an example of ‘last one in first one out’.

We can build a stack from an array
A stack is an example of a data structure that can be built by adapting an array.
If you think about it, all that is needed is an array to store the data, an array
push method to add elements to the ‘end’ or the ‘bottom’ of the stack and an
array pop method to remove the element at the top.

Demonstration
Below we create a stack constructor, using a class. An object created from this
template will have the following properties and methods:

• items[] → an array to store the data
• push() → a method to add an element to the end of the stack
• pop() → a method to remove an element from the front

In addition we have the following helpers, which allow us to check the status of
the stack and retrieve information about it:

• isEmpty() → check if the stack is populated or not
• clear() → empty the stack of its content (therefore making isEmpty()

return true)
• size → a property corresponding to the stack’s length

class Stack {
items = [] // the array that will store the elements that comprise the stack
push = (element) => this.items.push(element) // add an element to the end of the stack
pop = () => this.items.pop() // remove and return the last element from the stack

// We can add some useful helper methods, that return info about the state of the stack:
isEmpty = () => (this.items.length === 0) // return true if the stack is empty
clear = () => this.items.length = 0 // empty the stack
size = () => this.items.length // count elements in stack

}

Run through
let stack = new Stack();
test.push(1); // Add some elements to the stack
test.push(2);
test.push(3);

2



// Stack now looks like:
console.log(stack.items); // [1, 2, 3]

// Let's try removing the last element
stack.pop(); // 3 -> this was the last element we added, so it's the first one that comes out

// Now the stack looks like this:
// [1,2]

// Let's add a new element
test.push(true)

// Now the stack looks like:
// [1,2, true]

Practical applications
• Any application that wants to got ‘back in time’ must utilise a stack. For

example, the ‘undo’ function in most software is a function of a stack. The
most recent action is at the top, and under that is the second most recent
and so on all the way back to the first action.

• Recursive functions: a function that calls itself repeatedly until a boundary
condition is met is using a stack structure. As you drill down through the
function calls you start from the most recent down to the last.

• Balancing parentheses. Say you want to check if the following string is
balanced [()] . Every time you find an opening parentheses. You push
that to the front of a stack. You then compare the closing parentheses
with the order of the stack. The same could be done when seeking to
find palindromes. This sort of thing could be a code challenge so build an
example.

3


	A stack is a linear data structure that observes LIFO
	We can build a stack from an array
	Demonstration
	Run through
	Practical applications

