
_Visualization of the queue data structure _

Figure 1: queue.svg

A queue is a sequential data structure and most similar to
a stack
A queue is basically a stack inverted and can be visualised as a line of people
waiting to be served. The person that is first into the queue is served first. The
people who join the queue behind this person will be served after them.

As a result it can be summarised as ‘first in, first out’ or FIFO.

Just like a stack it is a sequential data structure without random access. You
cannot access all the elements at one instant, you can only access the oldest
element. If you wish to access the newest element, you have to move through all
the others that are ahead of it first, at which point it becomes the oldest.

It differs from a stack in that a stack only has one point of transaction: the front
or ‘top’ of the stack. With a stack you add and remove from the top or front.
With a queue, you have two points of transaction: the front of the queue for
removing elements and the back of the queue for adding elements.

We can however add a ‘peek’ method to see which is the next element in line to
come out.

As we are removing the first element added, we use an array shift method to
remove items from the front of the array.

1



Removing an element from the queue is called dequeuing. Adding an element
to the queue is called enqueuing. In terms of the tail/head nomenclature, the
end of the queue where elements are enqueued is the tail and front of the queue,
where elements are removed is the head.

class Queue {
items = [] // array to store the elements comprising the queue
enqueue = (element) => this.items.push(element) // add element to back
dequeue = () => this.items.shift() // remove element from the front

// Optional helper methods:
isEmpty = () => (this.items.length === 0) // return true if the queue is empty
clear = () => this.items.length = 0 // empty the queue
size = () => this.items.length // count elements in queue

peek = () => !this.isEmpty() ? this.items[0] : undefined; // check which element is next in line
}

Use cases
• A queue sequences data in the order that it was first received. Thus it is

most beneficial in scenarios where receipt time is a factor. For example,
imagine a service whereby tickets go on sale at a certain time for a limited
period. You may want to prioritise those who sent their payment earliest
over those who arrived later.

• Serving requests on a single shared resource like a printer or CPU task
scheduling.

2


	A queue is a sequential data structure and most similar to a stack
	Use cases

