Definition of an API

An application programming interface is a set of definitions and protocols for
building and integrating application software. It can be thought of as a contract
between an information provider and an informational consumer. The API is
a mediator between the clients and the resources they wish to acquire from a
server or database.

REST

REST stands for Representational State Transfer. It is a set of architectural
constraints on the structure of an API rather than a fixed protocol. It is a
particular way of implementing client-server interaction over HTTP.

When a request is made from a client to resources via RESTful API, the API
transfers a representation of of the state of the resource to the requester or
endpoint. The information is delivered via HTTP. The format can be of several
types (HTML, XML, plaintext, Python, PHP etc) but is generally JSON because
of its broad compatibility with multiple programming languages.

Key constraints
In order to qualify as RESTful, an API must meet the following constraints:

1. Uniform interface: Possess a client-server architecture with request
manage through HTTP

2. Client-server decoupling : The client and server applications must be
completely independent of one another. The only information the client
should know about the server is the URI it uses to request the resource,
it can’t interact with the server in any other way. Likewise, the server
shouldn’t modify the client application in any way (contrast for example
SSR) other than passing the requested data via HTTP.

3. Statelessness Server applications should not be able to store any data
related to a client request. The request alone should contain all the
information necessary for processing it, without recourse to any specifics of
the client application. For example, a specification of POST with a certain
JSON body and header authentication will be all that is provided to the
server.

4. Cacheability Where possible, resources should be cacheable on the client
or server side. Server responses must contain information about whether
caching is allowed for the delivered resource (you see this in the headers in
the DevTools console). The goal here is to improve performance on the
client side whilst increasing scaleability on the server side.

5. Layered system architecture It may be the case that the data flow
between the client and the server is not direct. For instance the request
may be funneled through middleware or another program before it is
received by the server. Similarly there may be several steps before the

client receives the requested data. Whilst one should not assume a direct
correspondence, REST APIs need to be designed so that neither the client
nor the server can tell whether it communicates with the end application
or an intermediary.

Example

A basic example of a REST API would be a series of methods corresponding to
the main HTTP request types.

| HTTP request type | URI | Action | Body 7 | | |

| | | | GET | /api/customers | Retrieve
customers as array | No | | GET | /api/customers/guid | Get a specific customer
| No, data comes from GUID | | PUT | /api/customers/guid | Update an existing
customer | Yes | | DELETE | /api/customers/1 | Delete a customer | No, data
comes from GUID | | POST | /api/customers | Create a new customer | Yes |

HTTP%20request%20types.md

	Definition of an API
	REST
	Key constraints

	Example

