Autosave: 2022-12-23 14:00:05
This commit is contained in:
parent
772109d084
commit
dad4dbd366
1 changed files with 9 additions and 4 deletions
|
@ -6,26 +6,31 @@ tags: [logic, laws]
|
|||
|
||||
# DeMorgan's Laws
|
||||
|
||||
DeMorgan's laws express some fundamental equivalences that obtain between the Boolean [connectives](Truth-functional%20connectives.md):
|
||||
DeMorgan's laws express some fundamental equivalences that obtain between the Boolean [connectives](/Logic/Propositional_logic/Truth-functional_connectives.md).
|
||||
|
||||
## First Law
|
||||
|
||||
> The negation of a conjunction is logically equivalent to the disjunction of the negations of the original conjuncts.
|
||||
|
||||
$$
|
||||
\sim (P \& Q) \equiv \sim P \lor \sim Q
|
||||
\lnot (P \land Q) \leftrightarrow \lnot P \lor \lnot Q
|
||||
$$
|
||||
|
||||
The equivalence is demonstrated with the following truth-table
|
||||
|
||||

|
||||
| $P$ | $Q$ | $ \lnot (P \land Q)$ | $ \lnot P \lor \lnot Q$ |
|
||||
| --- | --- | -------------------- | ----------------------- |
|
||||
| T | T | F | F |
|
||||
| T | F | T | T |
|
||||
| F | T | T | T |
|
||||
| F | F | T | T |
|
||||
|
||||
## Second Law
|
||||
|
||||
> The negation of a disjunction is equivalent to the conjunction of the negation of the original disjuncts.
|
||||
|
||||
$$
|
||||
\sim (P \lor Q) \equiv \sim P \& \sim Q
|
||||
\lnot (P \lor Q) \leftrightarrow \lnot P \land \lnot Q
|
||||
$$
|
||||
|
||||

|
||||
|
|
Loading…
Add table
Reference in a new issue