Autosave: 2022-12-21 08:30:01
This commit is contained in:
parent
852d2a2bad
commit
6e39cefb42
3 changed files with 16 additions and 34 deletions
|
@ -42,20 +42,12 @@ $$
|
|||
|
||||
$ \{P, Q\} $ form a consistent set because there is at least one assignment when both propositions are true. In fact there are two (corresponding to each disjunct) but one is sufficient.
|
||||
|
||||
```
|
||||
P Q P ∨ Q Q
|
||||
T T T T *
|
||||
T F T F
|
||||
F T T T *
|
||||
F F F F
|
||||
```
|
||||
|
||||
| $P$ | $Q$ | $ P \lor Q $ | $Q$ |
|
||||
| --- | --- | ------------ | --- |
|
||||
| 0 | 0 | 0 | 0 |
|
||||
| 0 | 1 | 1 | 1 |
|
||||
| 1 | 0 | 1 | 1 |
|
||||
| 1 | 1 | 1 | 1 |
|
||||
| T | T | T | T |
|
||||
| T | F | T | F |
|
||||
| F | T | T | T |
|
||||
| F | F | F | F |
|
||||
|
||||
## Derivation
|
||||
|
||||
|
|
|
@ -22,28 +22,19 @@ $$
|
|||
|
||||
### Truth-tables
|
||||
|
||||
```
|
||||
P Q P ⊃ Q
|
||||
T T T
|
||||
T F F
|
||||
F T T
|
||||
F F T
|
||||
```
|
||||
|
||||
```
|
||||
P Q ~ P ∨ Q
|
||||
T T T
|
||||
T F F
|
||||
F T T
|
||||
F F T
|
||||
```
|
||||
| $P$ | $Q$ | $ P \supset Q $ | $ \sim P \lor Q$ |
|
||||
| --- | --- | --------------- | ---------------- |
|
||||
| T | T | T | T |
|
||||
| T | F | T | F |
|
||||
| F | T | T | T |
|
||||
| F | F | F | T |
|
||||
|
||||
### Derivation
|
||||
|
||||
> Propositions $P$ and $Q$ are equivalent in a system of [derivation](Formal%20proofs%20in%20propositional%20logic.md) for propositional logic if $Q$ is derivable from $P$ and $P$ is derivable from $Q$.
|
||||
|
||||
Note that the property of equivalence stated in terms of derivablity above is identical to the derivation rule for the [material biconditional](Biconditional%20Introduction.md):
|
||||
Note that the property of equivalence stated in terms of derivablity above is identical to the derivation rule for the [material biconditional](/Logic/Proofs/Biconditional_Introduction.md):
|
||||
|
||||

|
||||

|
||||
|
||||
//TODO: Add demonstration of this by deriving two equivalents from one of DeMorgan's Laws
|
||||
|
|
|
@ -44,8 +44,7 @@ P
|
|||
|
||||
### Truth-table
|
||||
|
||||
```
|
||||
P P
|
||||
T T
|
||||
F F
|
||||
```
|
||||
| $P$ | $P$ |
|
||||
| --- | --- |
|
||||
| T | T |
|
||||
| F | F |
|
||||
|
|
Loading…
Add table
Reference in a new issue