2022-04-23 13:26:53 +01:00
|
|
|
---
|
2022-09-06 13:26:44 +01:00
|
|
|
tags:
|
|
|
|
- prealgebra
|
2022-04-23 13:26:53 +01:00
|
|
|
- fractions
|
2023-02-10 18:22:04 +00:00
|
|
|
- arithmetic
|
2022-04-23 13:26:53 +01:00
|
|
|
---
|
|
|
|
|
2022-09-06 13:26:44 +01:00
|
|
|
# Multiplying fractions
|
|
|
|
|
2024-02-02 15:58:13 +00:00
|
|
|
To find the product of two fractions $\frac{a}{b}$ and $\frac{c}{d}$ multiply
|
|
|
|
their numerators and denominators and then reduce:
|
2022-04-23 13:26:53 +01:00
|
|
|
|
2022-09-06 13:26:44 +01:00
|
|
|
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$
|
2022-04-23 13:26:53 +01:00
|
|
|
|
2022-09-06 13:26:44 +01:00
|
|
|
### Example
|
2022-04-23 13:26:53 +01:00
|
|
|
|
|
|
|
$$
|
2022-04-29 08:00:47 +01:00
|
|
|
\frac{1}{3} \cdot \frac{2}{5} = \frac{1 \cdot 2}{3 \cdot 5} = \frac{2}{15}
|
2022-04-23 13:26:53 +01:00
|
|
|
$$
|
|
|
|
|
|
|
|
## Prime factorisation in place
|
|
|
|
|
2024-02-02 15:58:13 +00:00
|
|
|
The example above did not require a reduction, so here is a more complex
|
|
|
|
example:
|
2022-04-23 13:26:53 +01:00
|
|
|
|
|
|
|
$$
|
2022-09-06 13:26:44 +01:00
|
|
|
\frac{14}{15} \cdot \frac{30}{140} = \frac{420}{2100}
|
2022-04-23 13:26:53 +01:00
|
|
|
$$
|
|
|
|
|
2024-02-02 15:58:13 +00:00
|
|
|
It would be laborious to reduce such a large product using factor trees or the
|
|
|
|
repeated application of divisors, as defined in
|
2024-02-17 11:57:44 +00:00
|
|
|
[reducing fractions](Reducing_fractions.md). We can use a more efficient
|
2024-02-02 15:58:13 +00:00
|
|
|
method. This method can be applied at the point at which we conduct the
|
|
|
|
multiplication rather than afterwards once we have the product. We express the
|
|
|
|
the initial multiplicands as prime factors:
|
2022-04-23 13:26:53 +01:00
|
|
|
|
|
|
|
$$
|
2022-09-06 13:26:44 +01:00
|
|
|
\frac{14}{15} \cdot \frac{30}{140} = \frac{(2 \cdot 7) \cdot (2 \cdot 3 \cdot 5) }{(3 \cdot 5) \cdot (2 \cdot 2 \cdot 7 \cdot 5)}
|
2022-04-23 13:26:53 +01:00
|
|
|
$$
|
|
|
|
|
2024-02-02 15:58:13 +00:00
|
|
|
We now have the product in factorised form before we have applied the
|
|
|
|
multiplication so we can go ahead and cancel:
|
2022-04-23 13:26:53 +01:00
|
|
|
|
|
|
|
$$
|
2022-04-29 08:00:47 +01:00
|
|
|
\frac{\cancel{2}, \cancel{7}, \cancel{2}, \cancel{3}, \cancel{5}}{\cancel{3}, \cancel{5}, \cancel{2}, \cancel{2}, \cancel{7}, 5} = \frac{1}{5}
|
2022-04-23 13:26:53 +01:00
|
|
|
$$
|
|
|
|
|
2024-02-02 15:58:13 +00:00
|
|
|
**Note that in the above case, there was only a single 5 left as a denominator
|
|
|
|
and no value left as a numerator. This is equivalent to there just being "one
|
|
|
|
five" so we write $\frac{1}{5}$**
|
2022-04-23 13:26:53 +01:00
|
|
|
|
2022-04-29 08:00:47 +01:00
|
|
|
## Example of multiplying fractions with negative fractions containing variables
|
2022-04-23 13:26:53 +01:00
|
|
|
|
2024-02-02 15:58:13 +00:00
|
|
|
Calculate: $$- \frac{6x}{55y} \cdot - \frac{110y^2}{105x^2}$$
|
2022-04-23 13:26:53 +01:00
|
|
|
|
2022-09-06 13:26:44 +01:00
|
|
|
First multiply in place:
|
|
|
|
|
|
|
|
$$
|
2022-04-29 08:00:47 +01:00
|
|
|
\frac{(3 \cdot 2 \cdot x) \cdot (5 \cdot 2 \cdot 11 \cdot y \cdot y)}{(5 \cdot 11 \cdot y) \cdot (7 \cdot 5 \cdot 3 \cdot x \cdot x)}
|
2022-04-23 13:26:53 +01:00
|
|
|
$$
|
|
|
|
|
2022-09-06 13:26:44 +01:00
|
|
|
Then cancel:
|
2022-04-23 13:26:53 +01:00
|
|
|
|
2022-09-06 13:26:44 +01:00
|
|
|
$$
|
|
|
|
\frac{(\cancel{3} \cdot 2 \cdot \cancel{x}) \cdot (\cancel{5} \cdot 2 \cdot \cancel{11} \cdot \cancel{y} \cdot y)}{(\cancel{5} \cdot \cancel{11} \cdot \cancel{y}) \cdot (7 \cdot 5 \cdot \cancel{3} \cdot \cancel{x} \cdot x)} =
|
2022-04-29 08:00:47 +01:00
|
|
|
\frac{2 \cdot 2 \cdot y}{7 \cdot 5 \cdot x}
|
2022-04-23 13:26:53 +01:00
|
|
|
$$
|
|
|
|
|
2022-09-06 13:26:44 +01:00
|
|
|
Then reduce:
|
2022-04-23 13:26:53 +01:00
|
|
|
|
|
|
|
$$
|
2022-09-06 13:26:44 +01:00
|
|
|
\frac{2 \cdot 2 \cdot y}{7 \cdot 5 \cdot x} = \frac{4y}{35x}
|
2022-04-23 13:26:53 +01:00
|
|
|
$$
|